Вопрос задан 14.06.2019 в 04:59.
Предмет Геометрия.
Спрашивает Пономарёва Юлиана.
BD-биссектриса прямоугольного треугольника ABC с прямым углом C. Докажите, что точка D равноудалена
от прямых BC и AB.Ответы на вопрос
        Отвечает Александрова Александра.
                
    Решение Вашего задания во вдожении
        Отвечает Есинов Игорь.
                
    Точка, лежащая на биссектрисе угла, равно удалена от сторон этого угла. Наименьшее расстояние от точки до прямой - перпендикуляр. Опускаем перпендикуляр из точки Д на ВА - точка М. Треугольники ВМД и ВСД прямоугольные. Угол ДВС равен углу МВД, т.к. ВД - биссектриса угла В. Прямоугольные треугольники ВМД и ВКС равны по гипотенузе и острому углу. А в равных треугольниках против равных углов лежат равные стороны. Против угла ДВС лежит сторона ДС, а против угла МВД лежит сторона МД. Значит стороны эти равны, точка Д равноудалена от прямых ВС и АВ.
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
	- 
			
Математика
 - 
			
Литература
 - 
			
Алгебра
 - 
			
Русский язык
 - 
			
Геометрия
 - 
			
Английский язык
 - 
			
Химия
 - 
			
Физика
 - 
			
Биология
 - 
			
Другие предметы
 - 
			
История
 - 
			
Обществознание
 - 
			
Окружающий мир
 - 
			
География
 - 
			
Українська мова
 - 
			
Информатика
 - 
			
Українська література
 - 
			
Қазақ тiлi
 - 
			
Экономика
 - 
			
Музыка
 - 
			
Право
 - 
			
Беларуская мова
 - 
			
Французский язык
 - 
			
Немецкий язык
 - 
			
МХК
 - 
			
ОБЖ
 - 
			
Психология
 - 
			
Физкультура и спорт
 - 
			
Астрономия
 - 
			
Кыргыз тили
 - 
			
Оʻzbek tili
 
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			