
Вопрос задан 12.06.2019 в 16:53.
Предмет Геометрия.
Спрашивает Коробков Ваня.
Определите вид четырехугольника ABCD с вершинами A(2;3;4), B(4;-2;2), C(0;-1;-2), D(-2;4;0).


Ответы на вопрос

Отвечает Андрієшин Олег.
Дан четырехугольник ABCD с вершинами:
A(2; 3; 4), B(4; -2; 2), C(0 ;-1; -2), D(-2; 4; 0).
Расчет длин сторон
АB = √((Хв-Ха)²+(Ув-Уа)²+(Zв-Zа)²) = √33 ≈ 5,7446,
BC = √((Хс-Хв)²+(Ус-Ув)²+(Zс-Zв)²) = √33 ≈ 5,7446,
CД = √((Хд-Хс)²+(Уд-Ус)²+(Zд-Zс)²) = √33 ≈ 5,7446,
АД = √((Хд-Ха)²+(Уд-Уа)²+(Zд-Zа)²) = √33 ≈ 5,7446.
Стороны равны.
Находим диагонали
АС = √((Хс-Ха)²+(Ус-Уа)²+(Zс-Zа)²) = √56 ≈ 7,483,
BД = √((Хд-Хв)²+(Уд-Ув)²+(Zд-Zв)²) = √76 ≈ 8,7178.
Находим угол между диагоналями
х у z
Вектор c(АС) (-2; -4; -6) = √56 ≈ 7,483315.
Вектор d(ВД) (-6; 6; -2) = √76 ≈ 8,717798.
cos α (12-24+12)/((√56*√76) = 0.
α = 90 градусов.
Ответ: АВСД - ромб.
A(2; 3; 4), B(4; -2; 2), C(0 ;-1; -2), D(-2; 4; 0).
Расчет длин сторон
АB = √((Хв-Ха)²+(Ув-Уа)²+(Zв-Zа)²) = √33 ≈ 5,7446,
BC = √((Хс-Хв)²+(Ус-Ув)²+(Zс-Zв)²) = √33 ≈ 5,7446,
CД = √((Хд-Хс)²+(Уд-Ус)²+(Zд-Zс)²) = √33 ≈ 5,7446,
АД = √((Хд-Ха)²+(Уд-Уа)²+(Zд-Zа)²) = √33 ≈ 5,7446.
Стороны равны.
Находим диагонали
АС = √((Хс-Ха)²+(Ус-Уа)²+(Zс-Zа)²) = √56 ≈ 7,483,
BД = √((Хд-Хв)²+(Уд-Ув)²+(Zд-Zв)²) = √76 ≈ 8,7178.
Находим угол между диагоналями
х у z
Вектор c(АС) (-2; -4; -6) = √56 ≈ 7,483315.
Вектор d(ВД) (-6; 6; -2) = √76 ≈ 8,717798.
cos α (12-24+12)/((√56*√76) = 0.
α = 90 градусов.
Ответ: АВСД - ромб.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili