
Вопрос задан 05.06.2019 в 00:22.
Предмет Геометрия.
Спрашивает Иванов Сергей.
В параллелограмме авсd из вершины тупого угла В проведена биссектрисса ВК Найдите периметр
параллелограмма, если АК:KD = 3:2, а ВС =40

Ответы на вопрос

Отвечает Sikan Daria.
<СВК = <АКВ как накрест лежащие углы при пересечении двух параллельных прямых AD и ВС секущей ВК. Но
<CBK=<ABK, т. к. ВК - биссектриса угла В. Значит
<AKB=<ABK, и треугольник АВК - равнобедренный (углы при его основании ВК равны).
АК=АВ=6, AD=6+2=8. Тогда
P ABCD = 2AB+2AD=2*6+2*8=28
<CBK=<ABK, т. к. ВК - биссектриса угла В. Значит
<AKB=<ABK, и треугольник АВК - равнобедренный (углы при его основании ВК равны).
АК=АВ=6, AD=6+2=8. Тогда
P ABCD = 2AB+2AD=2*6+2*8=28


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili