Вопрос задан 04.06.2019 в 08:29. Предмет Геометрия. Спрашивает Першутов Даниил.

Периметр равнобедренной трапеции равен 68. Найдите площадь этой трапеции, если ее основания равны

18 и 30.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Крутик Лиза.
Ная что площадь трапеции равна 192, а основания равны 18 и 30, найдем её высоту по формуле s=a+b/2 *h  вырежем отсюда h,h=s*2/(MP+OL)=192*2/48=4*2=8,вычтем из большего основания меньшее основание и разделим получившееся значение на 2, так мы найдем OH,OH=(30-18)/2=6, используя теорему пифагора найдем OM,OM^2=OH^2+MH^2=36+64=100,OM=10,так как боковые стороны равнобедренной трапеции равны то PL=OM=10,найдем периметр: P=OM+MP+PL+OL=10+10+18+30=20+48=68. ответ:68.
0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос