
Вопрос задан 03.06.2019 в 21:03.
Предмет Геометрия.
Спрашивает Шарафутдинов Руслан.
Используя теорему косинусов,решите треугольник ABC,если АВ=2под корнем 2 дм,BC=3дм, <В=45°


Ответы на вопрос

Отвечает Тихий Ислам.
AB = 2√2 дм
BC = 3 дм
∠B = 45°
1. Через теорему косинусов можно найти сторону АС
АС² = AB²+BC²-2·AB·BC·cos(∠B)
АС² = (2√2)²+3²-2·2√2·3·cos(45°)
АС² = 8+9-12√2/√2 = 17-12 = 5
AC = √5 дм
2. Через теорему синусов найдём угол С
AB/sin(∠C) = AC/sin(∠B)
sin(∠C) = AB·sin(∠B)/AC = 2√2/√5/√2 = 2/√5
∠C = arcsin(2/√5)
3. Через теорему синусов найдём угол A
AC/sin(∠B) = BC/sin(∠A)
AC/sin(∠B) = BC/sin(∠A)
√5·√2 = 3/sin(∠A)
sin(∠A) = 3/√10
∠A = arcsin(3/√10)
BC = 3 дм
∠B = 45°
1. Через теорему косинусов можно найти сторону АС
АС² = AB²+BC²-2·AB·BC·cos(∠B)
АС² = (2√2)²+3²-2·2√2·3·cos(45°)
АС² = 8+9-12√2/√2 = 17-12 = 5
AC = √5 дм
2. Через теорему синусов найдём угол С
AB/sin(∠C) = AC/sin(∠B)
sin(∠C) = AB·sin(∠B)/AC = 2√2/√5/√2 = 2/√5
∠C = arcsin(2/√5)
3. Через теорему синусов найдём угол A
AC/sin(∠B) = BC/sin(∠A)
AC/sin(∠B) = BC/sin(∠A)
√5·√2 = 3/sin(∠A)
sin(∠A) = 3/√10
∠A = arcsin(3/√10)


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili