
Вопрос задан 30.05.2019 в 03:34.
Предмет Геометрия.
Спрашивает Гапюк Віра.
В прямоугольном треугольнике угол между высотой и медианой проведенными из вершины прямого угла =
30 (градус.), меньший катет = 6см.Знайты гипотенузу и катет

Ответы на вопрос

Отвечает Глобина Ксюша.
Треуг АВС -прямоугольный, уголС=90
СН-высота, См-медиана
Угол МСН=30, следовательно угол СМН=90-30=60
УголАМС=180-60=120
Медиана прямоугольного треугольника равна половине гипотенузы, следовательно треугАМС-равнобедренный, следовательно уголА=углуАСМ=30
А значит уголАВС=60
sin30=CB/AB=1/2
1/2=6/AB
AB=12
sin60=AC/AB
sin60=√3/2
√3/2=AC/12
AC6√3
Ответ: гипотенуза равна12, а катет 6√3.
СН-высота, См-медиана
Угол МСН=30, следовательно угол СМН=90-30=60
УголАМС=180-60=120
Медиана прямоугольного треугольника равна половине гипотенузы, следовательно треугАМС-равнобедренный, следовательно уголА=углуАСМ=30
А значит уголАВС=60
sin30=CB/AB=1/2
1/2=6/AB
AB=12
sin60=AC/AB
sin60=√3/2
√3/2=AC/12
AC6√3
Ответ: гипотенуза равна12, а катет 6√3.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili