
Вопрос задан 18.05.2018 в 20:30.
Предмет Геометрия.
Спрашивает Скоробогатый Деня.
Выяснить, является ли функция y=sinx-tgx четной или нечетной


Ответы на вопрос

Отвечает Золотухин Данил.
По определению, функция является четной (нечетной) если её область определения симметрична относительно начала координат и для любого х из области определения выполняется равенство
f(-x)=f(x) ( для нечетности : f(-x)=-f(x)).
у=sinx - нечетная функция,
область определения х- любое,
sin(-x)=-sinx
y=tgx- нечетная функция,
область определения х-любое, кроме х=(π/2)+πk, k∈ Z.
tg(-x)=-tgx
Область определения суммы (разности ) двух функций- пересечение областей определения входящих в сумму (разность) функций.
Поэтому область определения данной функции
х- любое, кроме х=(π/2)+πk, k∈ Z.
f(-x)=sin(-x)-tg(-x)=-sinx-(-tgx)=-sinx+tgx=-(sinx-tgx)=-f(x).
О т в е т. функция нечетная.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili