Вопрос задан 26.05.2019 в 03:26. Предмет Геометрия. Спрашивает Світлик Анастасія.

Основание пирамиды - треугольник со сторонами 5, 5 и 6. Высота пирамиды проходит через центр круга,

вписанного в этот треугольник и равна 2. Найдите площадь боковой поверхности пирамиды.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Ершов Никита.
В пирамиде, основание высоты которой лежит в центре вписанной в основание окружности, апофемы боковых граней равны.
Радиус вписанной окружности: r=S/p,
По формуле Герона S=√(p(p-a)(p-b)(p-c)), где р=(a+b+c)/2.
р=(5+5+6)/2=8.
S=√(8(8-5)²(8-6))=12,
r=12/8=1.5
В тр-ке, образованном найденным радиусом, высотой пирамиды и апофемой, последняя равна: l=√(r²+h²)=√(1.5²+2²)=2.5
Площадь боковой поверхности: Sбок=P·l/2=p·l=8·2.5=20 (ед)² - это ответ.
0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос