Вопрос задан 24.05.2019 в 12:33. Предмет Геометрия. Спрашивает Гачегова Анастасия.

Медиана прямоугольного треугольника, проведённая к гипотенузе, равна 10 см. А расстояние между

серединой гипотенузы и основанием высоты треугольника, проведенной к гипотенузе, равно 6 см. Найдите периметр данного треугольника.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Todua David.
Прямоугольный треугольник АВС, <С=90°, медиана СМ=10, высота СН, МН=6
Гипотенуза АВ=2СМ=20, АМ=МВ=20/2=10
Из прямоугольного ΔСМН найдем высоту
СН=√СМ²-МН²=√100-36=8
Из прямоугольного ΔАСН найдем АС=√АН²+СН²=√(АМ-МН)²+СН²=√(10-6)²+8²=√80=4√5
Катет ВС=√АВ²-АС²=√20²-(4√5)²=√320=8√5
периметр Р=АВ+АС+ВС=20+4√5+8√5=20+12√5
0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос