
Вопрос задан 17.05.2019 в 10:49.
Предмет Геометрия.
Спрашивает Холод Виктория.
В параллелограмме ABCD из вершин тупых углов B и D проведены биссектрисы BE и DF. Точки E и F
принадлежат диагонали AC. Докажите, что четырехугольник BFDE – параллелограмм.Даю 25 баллов!!!!!

Ответы на вопрос

Отвечает Грибовский Слава.
Углы СВЕ и ЕВА раны т.к. бис-са, угол ВЕА = угол АВЕ т.к. прямые ВС и АД параллельны,аналогично угол СFД=СДF=FДЕ,значит ВЕ параллельно FД и ВF параллельно ЕД,значит это параллелограмм по определению.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili