
Вопрос задан 16.05.2018 в 09:59.
Предмет Геометрия.
Спрашивает Юрченко Соня.
Посмотрите пожалуйста. В прямоугольном треугольнике ABC угол B=90 градусов MN-средняя линия MN||AB.
Докажите что радиус окружности вписанной в треугольник ABC в 2 раза больше радиуса окружности вписанной в треугольник MNC. Только объясните пожалуйста доступно чтобы было понятно именно мне.

Ответы на вопрос

Отвечает Левина Алина.
Радиус окружности, вписанной в прямоугольный треугольник, находят по формуле
r=(a+b-c):2
Проведем вторую среднюю линию NL, параллельную АВ и равную половине АВ.
Пусть стороны ⊿ АMN равны a,b,c,
тогда стороны⊿ АВС=2a, 2b, 2c, так как MN и NL - его средние линии.
Радиус вписанной в ⊿АМN окружности равен
r=(a+b-c):2
Cтороны ⊿АВС в два раза больше сторон ⊿ АMN, и радиус его будет:
R=(2a+2b-2c):2=2(a+b-c):2=(a+b-c).
R=2r, что и требовалось доказать.



Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili