Вопрос задан 14.05.2019 в 23:11. Предмет Геометрия. Спрашивает Кузнецов Александр.

Окружность с центром на стороне AC треугольника ABC проходит через вершину C и касается прямой AB в

точке B. Найдите AC, если диаметр окружности равен 7,5, а AB=2.Если можно с рисунком и подробным решением.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Мотылькова Аня.
Решение задачи:Отрезок AC равен сумме отрезков AO и OC, OC - равен радиусу окружности, т.е. 7,5/2=3,75. Найдем AO.
Проведем отрезок BO. BO - так же является радиусом окружности. AB -касательная к окружности, следовательно AB перпендикулярен BO (посвойству касательной).
Значит треугольник ABO - прямоугольный, тогда по теореме Пифагора:
AO2=AB2+BO2
AO2=22+3,752
AO2=4+14,0625=18,0625
AO=4,25
AC=AO+OC=4,25+3,75=8
Ответ: AC=8  

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос