
Вопрос задан 15.05.2018 в 05:26.
Предмет Геометрия.
Спрашивает Борисова Настя.
Четырехугольник ABCD вписан в окружность. Его диагонали AC и BD пересекаются в точке Е. Найдите
BD,если АВ=ВС=4 и ВЕ=корень2.

Ответы на вопрос

Отвечает Кочкин Антон.
Т.к. AB=BC, то ∠BAC=∠BCA. Т.к. углы BCA и BDA опираются на одну дугу, то они равны. Т.е. ∠BAC=∠BDA. Значит треугольники BAE и BDA подобны по двум углам (∠B у них общий). Значит AB/BD=BE/AB, т.е. 4/BD=√2/4. Отсюда BD=8√2.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili