Вопрос задан 09.05.2019 в 16:42. Предмет Геометрия. Спрашивает Засухина Лилюша.

Срочно очень!!!!!!!!Точки М и N — середины ребер АВ и АС тетраэдра ABCD. Докажите, что прямая MN

параллельна плоскости BCD.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Низамов Никита.
Рассмотрим грань ABC тетраэдра. Из условия следует, что MN - средняя линия треугольника ABC. Тогда прямая MN параллельна прямой BC по свойству средней линии. Прямая параллельна плоскости, если она параллельна некоторой прямой, лежащей в этой плоскости. Прямая MN параллельна прямой BC, которая лежит в плоскости BCD. Тогда прямая MN параллельна плоскости BCD, что и требовалось доказать.
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Proof that line MN is parallel to plane BCD

To prove that line MN is parallel to plane BCD, we need to show that MN does not intersect plane BCD.

Let's consider the tetrahedron ABCD, where M and N are the midpoints of edges AB and AC, respectively.

To prove that MN is parallel to plane BCD, we can use the fact that the line connecting the midpoints of two sides of a triangle is parallel to the third side of the triangle.

In this case, we can consider triangle ABC, where M and N are the midpoints of sides AB and AC, respectively. The third side of the triangle is BC.

According to the midpoint theorem, the line segment MN is parallel to the side BC of triangle ABC.

Since the plane BCD contains the side BC of triangle ABC, and MN is parallel to BC, it follows that MN is also parallel to plane BCD.

Therefore, we have proven that line MN is parallel to plane BCD.

Please note that the search results did not provide specific information about the proof of this statement. However, the proof is based on the well-known midpoint theorem, which states that the line segment connecting the midpoints of two sides of a triangle is parallel to the third side of the triangle.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос