Вопрос задан 13.05.2018 в 19:49. Предмет Геометрия. Спрашивает Худоба Даша.

Найдите (в см2) площадь фигуры, изображенной на клетчатой бумаге с размером клетки 1 см × 1 см.

(Для того, чтобы найти радиус окружности, определите, в каких точках окружность проходит через пересечения линий сетки.)
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Бровкин Александр.

На рисунке закрашен сектор круга. Для нахождения его площади пользуемся формулой: 0.5*p*r, где p - длина дуги, заключенной между радиусами, а r - радиус. По рисунку (см. приложение) видно, что радиус равен  \sqrt{4+16} = 2\sqrt{5}  см, а длину дуги найдем по формуле: (πrα)\180°, где α - центральный угол. По рисунку видно, что угол α = 90°+45°= 135°. Значит, длина дуги равна: (2√5*135*π)\180 = 1,5√5π. Найдем площадь сектора: 0,5*1,5√5π*2√5=7,5π см²
Ответ: 7,5π см²


0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос