
Вопрос задан 13.05.2018 в 03:55.
Предмет Геометрия.
Спрашивает Мачалина Яна.
Найти площадь боковой поверхности правильной четырехугольной пирамиды, если ее стороны основания
равны 4 см и высота равна 2 корня из 2(см)

Ответы на вопрос

Отвечает Ертаева Азиза.
Пирамида АВСDS.
В основании правильной пирамиды лежит квадрат ABCD, а его грани - равные равнобедренные треугольники.
Вершина S проецируется в центр квадрата О.
Апофема грани (высота) SH.
Апофему найдем по Пифагору из треугольника OSH:
SH=√(SO²+OH²) или SH=√(8+4)=2√3 см.
Тогда площадь грани равна:
Sгр=(1/2)*АD*SH или Sгр=(1/2)*4*2√3=4√3 см².
Площадь боковой поверхности равна:
Sбок=4*Sгр=16√3 см².


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili