
В шар радиусом 4 см вписан куб. Найти площадь поверхности куба в см2


Ответы на вопрос




Finding the Surface Area of a Cube Inscribed in a Sphere
To find the surface area of a cube inscribed in a sphere with a radius of 4 cm, we can use the following steps:
1. Determine the length of the cube's edge. 2. Calculate the surface area of the cube.
Let's go through each step in detail.
Step 1: Determine the Length of the Cube's Edge
Since the cube is inscribed in a sphere, the diagonal of the cube is equal to the diameter of the sphere, which is twice the radius. Therefore, the diagonal of the cube is 8 cm.
To find the length of the cube's edge, we can use the formula for the diagonal of a cube in terms of its edge length:
Diagonal of a Cube = √3 * Edge Length
Solving for the edge length, we have:
Edge Length = Diagonal of a Cube / √3
Substituting the value of the diagonal (8 cm) into the formula, we get:
Edge Length = 8 cm / √3
Calculating this value, we find that the length of the cube's edge is approximately 4.6188 cm.
Step 2: Calculate the Surface Area of the Cube
The surface area of a cube is given by the formula:
Surface Area = 6 * (Edge Length)^2
Substituting the value of the edge length (4.6188 cm) into the formula, we get:
Surface Area = 6 * (4.6188 cm)^2
Calculating this value, we find that the surface area of the cube is approximately 267.9497 cm².
Therefore, the surface area of the cube inscribed in a sphere with a radius of 4 cm is approximately 267.9497 cm².


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili