
чему равна высота правильной треугольной пирамиды со стороной основания а и боковым ребром б


Ответы на вопрос

Высота правильной пирамиды имеет основание в точке пересечения высот основания.
В основании правильной треугольной пирамиды лежит правильный треугольк. Значит в нем высоты медианы и биссектрисы совпадают и равны между собой.
Рассмотрим основание пирамиды. Найдем в нем высоту основания по теореме Пифагора
высота основания = а * (корень из 3) /2
По свойству медиан расстояние от вершины треугольника в основании пирамиды до точки пересечения медиан = (2/3) * высоты = (2/3)* а * (корень из 3) /2 = а * (корень из 3) /3
Этот отрезок, боковое ребро пирамиды и высота пирамиды образуют прямоугольный треугольник. По теореме Пифагора находим высоту пирамиды
= корень из ( б^2 - (а * (корень из 3) /3)^2 ) =



Высота правильной треугольной пирамиды с основанием a и боковым ребром b может быть найдена с использованием формулы h = √(b^2 - (a/2)^2), где h - высота, a - сторона основания, b - боковое ребро.
Эта формула выводится из теоремы Пифагора, примененной к треугольнику, образованному половиной основания, высотой и боковым ребром.
Таким образом, высота правильной треугольной пирамиды с основанием a и боковым ребром b равна h = √(b^2 - (a/2)^2).


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili