Вопрос задан 06.05.2018 в 02:35. Предмет Геометрия. Спрашивает Щербак Егор.

Дан треугольник ABC, в котором AC=5, AB=6, BC=7. Биссектриса угла C пересекает сторону AB в точке

D. Определите площадь треугольника ADC. а)20 б)15 в)5корней6/2 г)18
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Каленська Карина.

Находим отрезок АД по свойству биссектрисы:
АД/АС = ВД/ВС.
АД = (АС*ВД)/ВС = 5*(6-АД)/7,
7АД = 30 - 5АД,
12АД = 30,
АД = 30/12 = 2,5.
Так как у треугольников АСД и АСВ общая высота, то их площади пропорциональны основаниям, то есть отрезкам АД и АВ.
S(АСД)/S(АСВ) = 2,5/6.
Находим площадь треугольника АВС:
S(АСВ) = √(p(p-a)(p-b)(p=c)).
Полупериметр р = (а+в+с)/2 = (7+5+6)/2 =18/2 = 9.
S(АСВ) = √(9*2*4*3) = 6√6.
S(АСД) = (2,5*S(АСВ))/6 = (2,5*6√6)/6 = 2,5√6 = 5√6/2.

Ответ: площадь треугольника ADC равна: в)56/2

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос