
Вопрос задан 06.05.2018 в 02:35.
Предмет Геометрия.
Спрашивает Щербак Егор.
Дан треугольник ABC, в котором AC=5, AB=6, BC=7. Биссектриса угла C пересекает сторону AB в точке
D. Определите площадь треугольника ADC. а)20 б)15 в)5корней6/2 г)18

Ответы на вопрос

Отвечает Каленська Карина.
Находим отрезок АД по свойству биссектрисы:
АД/АС = ВД/ВС.
АД = (АС*ВД)/ВС = 5*(6-АД)/7,
7АД = 30 - 5АД,
12АД = 30,
АД = 30/12 = 2,5.
Так как у треугольников АСД и АСВ общая высота, то их площади пропорциональны основаниям, то есть отрезкам АД и АВ.
S(АСД)/S(АСВ) = 2,5/6.
Находим площадь треугольника АВС:
S(АСВ) = √(p(p-a)(p-b)(p=c)).
Полупериметр р = (а+в+с)/2 = (7+5+6)/2 =18/2 = 9.
S(АСВ) = √(9*2*4*3) = 6√6.
S(АСД) = (2,5*S(АСВ))/6 = (2,5*6√6)/6 = 2,5√6 = 5√6/2.
Ответ: площадь треугольника ADC равна: в)5√6/2


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili