
Вопрос задан 24.03.2019 в 03:05.
Предмет Геометрия.
Спрашивает Баснянин Тимур.
Плоскость a, параллельная основаниям трапеции ABCD, пересекает ее боковые стороны AB и CD в точках
M и K. AD=30 см, BC=15 см. Чему равен MK, если т.М - середина AB?

Ответы на вопрос

Отвечает Луговой Никита.
Т.к. М-середина отрезка АВ, то АМ=МВ. Т.к. основания трапеции параллельные , т.е. ВС//AD, то и К-середина отрезка СD, и => CK=KD. Получаем, что МК- средняя линяя трапеции ABCD. МК=(AD+BC)/2=(30+15)/2=24.5


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili