Вопрос задан 23.03.2019 в 08:17.
Предмет Геометрия.
Спрашивает Rejn Darya.
В правильном треугольнике ABC со стороной AB = 4 см, через вершину A проведено перпендикуляр АМ к
плоскости треугольника ABC, AM = 4√3 см. А) Докажите, что прямая BC перпендикулярна плоскости AMP, где P - середина стороны BC. Б) Найдите расстояние от точки M до прямой BC
Ответы на вопрос
Отвечает Жукова Виктория.
ABC - равносторонний, где AP - высота, медиана, биссектриса. ⇒ AP ⊥ BC. Плоскость перпендикулярна, если прямая, лежащая в плости, перпендикулярна, а раз AP ⊥ BC, то плоскость AMP ⊥ BC
Высота в равностороннем треугольнике -
a = 4. Высота, AP, равна 2√3. Рассмотрим треугольник MAP, MA ⊥ AP - треугольник прямоугольный. MP² = MA² + AP² по теореме Пифагора
MP² = 60. MP = 4√15
Высота в равностороннем треугольнике -
a = 4. Высота, AP, равна 2√3. Рассмотрим треугольник MAP, MA ⊥ AP - треугольник прямоугольный. MP² = MA² + AP² по теореме Пифагора
MP² = 60. MP = 4√15
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili
