Вопрос задан 22.03.2019 в 22:41. Предмет Геометрия. Спрашивает Бочкарёв Владимир.

Четырехугольник PQRS вписан в окружность. Диагонали PR и QS перпендикулярны и пересекаются в точке

M. Известно, что PS=13, QM=10, QR=26PS=13, QM=10, QR=26. Найти площадь четырехугольника PQRS.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Темиргали Талгат.

Задание № 7:

Четырехугольник PQRS вписан в окружность. Диагонали PR и QS перпендикулярны и пересекаются в точке M. Известно, что PS=13, QM=10, QR=26. Найти площадь четырехугольника PQRS.

углы PRQ и PSQ опираются на одну и ту же дугу, значит они равны. кроме того диагонали перпендикулярны, значит в частности углы PMS и RMQ равны

тогда треугольники PMS и RMQ подобны

k=QR/PS=2

отношение k=QM/PM=2

10/PM=2; PM=5

отношение k=RM/SM=2

находим RM по т. Пифагора

RM=корень(QR^2-QM^2)=корень(26^2-10^2)=24

24/SM=2; SM=12

тогда полные диагонали:

QS=QM+SM=10+12=22

PR=PM+RM=5+24=29

площадь четырехугольника равна полупроизведению их диагоналей на синус угла между ними

S=(1/2)*22*29*sin90=319

ответ: 319

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос