
Вопрос задан 22.03.2019 в 22:26.
Предмет Геометрия.
Спрашивает Котова Лена.
Найдите значение выражения: sin^2α * tgα - cos^2α


Ответы на вопрос

Отвечает Птушко Анютка.
Если я правильно понял задание, то даны косинус и синус двойного угла. Если да. То начнем по порядку:
1- Нам дан тангенс - это отношение синуса к косинусу. Запишем:
Теперь распишем само выражение, применяя формулы синуса и косинуса двойного угла:
Воспользуемся нашим отношением (Sina=2cosa).
Подставим значение косинуса в наше выражение:
2-Также мы знаем формулу:
Откуда получим cos^2(a):
Подставим в наше выражение:
Вот и получили ответ.
Если же в дано идет Cos^2(a)-sin^2(a) - то получим:
Воспользуемся полученным ранее, что Cos^2(a)=1/5;
Так же получили ответ.



Отвечает Бурмистрова Арина.
Перечислим эти свойства: 1) Область определения: х - любое действительное число. 2) Область изменения: интервал (0, π). 3) Функция y = arсctg x ни четная, ни нечетная. Для нее выполняется тождество arсctg (-x) = π - arсctg x. 4) Функция y = arcсtg x монотонно убывающая на R. ⎛ π⎞ 5) График пересекает ось Оу в точке ⎜ 0, ⎟ . К оси Ох при х → + ∞ он приближается асимптоти- ⎝ 2⎠ чески (ось Ох является для него горизонтальной асимптотой при х → + ∞ ). Прямая у = π также служит асимптотой графика (при х → - ∞). 6) arcсtg x > 0 при любых x. Нулей функции нет. ОПР. Арккотангенсом числа а называется такое число из интервала (0, π), котангенс которого ра- вен а. ⎛ 1 ⎞ Пример 1. Найти α = arсctg ⎜ − ⎟ . ⎝ 3⎠ Подробно данный пример можно сформулировать так: найти такой аргумент α, лежащий в преде- 1 лах от 0 до π, котангенс которого равен − . 3 1 Решение. Существует бесчисленное множество аргументов, котангенс которых равен − , на- 3 −π 5π −7π пример: , , и т.д. Но нас интересует только тот аргумент, который находится в интерва- 6 6 6 5π ⎛ 1 ⎞ 5π ле (0, π). Таким аргументом будет . Итак, arctg ⎜ − ⎟ = . 6 ⎝ 3⎠ 6 Пример 2. Найти α = arcсtg 1. π Решение. Рассуждая так же, как и в предыдущем случае, получим arcctg 1 = . 4 Устные упражнения. ⎛ 3⎞ Найти: arcсtg ⎜ ⎟ , arcсtg (-1), arcсtg 3 . ⎝ 3⎠ Расположите в порядке возрастания: а) arcсtg 1,2, arcсtg р, arcсtg (-5); б) arcсtg (-7), arcсtg (-2,5), arcсtg 1,4. Примечание: исследование функции y = arcctg x и построение ее графика может быть задано на дом.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili