Вопрос задан 18.03.2019 в 18:29. Предмет Геометрия. Спрашивает Грицкевич Катя.

Боковая сторона равнобедренного треугольника меньше основания на 9 см, а отрезки, на которые

биссектриса при основании делит высоту, проведённую к основанию, относятся как 5:4. Найти высоту треугольника, проведённую к основанию.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Габидуллина Ильсия.
Пусть основание равно Х, тогда боковая сторона равна (Х-9).
В треугольнике, образованном высотой, проведенной к основанию, боковой стороной и половиной основания (данный нам треугольник равнобедренный) биссектриса угла при основании делит эту высоту в отношении 5:4, значит по свойству биссектрисы: "Биссектриса делит сторону, противолежащую углу в отношении сторон, образующих данный угол", имеем: (Х-9)/(Х/2)=5/4 или (9-Х)*2/Х=5/4. Тогда 8Х-72=5Х, отсюда Х=24. Итак, по Пифагору искомая высота равна
√[(Х-9)²-(X/2)²]=√(15²-12²)=9см.
Ответ: высота, проведенная к основанию, равна 9см.
0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос