Вопрос задан 15.03.2019 в 13:19. Предмет Геометрия. Спрашивает Черемисина Вика.

В прямоугольнике ABCD сторона АВ равна 12 см. Расстояние от точки пересече- ния диагоналей до этой

стороны равно 8 см. Найдите периметр прямоугольника ABCD. А. 40 см. Б. 20 см. В. 56 см. Г. 28 см
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Тёмных Ксения.
Ответ В 56 см
точку пересечения диагоналей обозначим как О,  от неё высоту к АВ- получим НО
смотрим треугольник НОВ, у него угол ОНВ прямой, ВН=ВА/2=12/2=6 (Точка пересечения диагоналей называется центром прямоугольника
 т.к. высота из центра прямоугольника то она делит сторону пополам, )
по теореме пифагора находим ВО
ВО²=НО²+ВН²
ВО²=8²+6²
ВО²=64+36
ВО²=100
ВО=10

из точки О проводим высоту к прямой ВС, получаем ОК
смотрим прямоугольник НВКО, в нём КО=ВН (как противоположные стороны прямоугольника)=6

смотрим прямоугольный треугольник КВО, по теореме Пифагора находим ВК (всё те же числа поэтому сразу ответ)=8
так как высота ОК проведена к ВС из центра прямоугольника то ВК=КС=8см
значит ВС=8+8=16

находим периметр прямоугольника АВСD=(16+12)2=28*2=56


0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос