
Вопрос задан 14.03.2019 в 15:45.
Предмет Геометрия.
Спрашивает Аржанцева Катя.
Четырехугольник abcd со сторонами ab=25 и cd=16 вписан в окружность. Диагонали ac и bd пересекаются
в точке k , причем угол akb =60 . найдите радиус окружности, описанной около этого четырехугольника

Ответы на вопрос

Отвечает Смирнов Евгений.
Сохраняя длину хорды CD передвинем ее по нашей окружности таким образом, чтобы она стала параллельна AB. При этом движении угол AKB остается всегда 60°, т.к. он равен полусумме постоянных дуг AB и CD, величина которых не меняется. В результате движения, треугольники ABK и CDK станут равносторонними, откуда AC=AK+KC=25+16=41 и ∠ACD=60°. Значит, по т. косинусов AD²=AC²+CD²-2AC·CD·cos∠ACD=41²+16²-2·41·16·(1/2)=1281.
Тогда, по т. синусов R=AD/(2sin∠ACD)=√(1281/3)=√427.
Тогда, по т. синусов R=AD/(2sin∠ACD)=√(1281/3)=√427.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili