Вопрос задан 14.03.2019 в 15:45. Предмет Геометрия. Спрашивает Аржанцева Катя.

Четырехугольник abcd со сторонами ab=25 и cd=16 вписан в окружность. Диагонали ac и bd пересекаются

в точке k , причем угол akb =60 . найдите радиус окружности, описанной около этого четырехугольника
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Смирнов Евгений.
Сохраняя длину хорды CD передвинем ее по нашей окружности таким образом, чтобы она стала параллельна AB. При этом движении угол AKB остается всегда 60°, т.к. он равен полусумме постоянных дуг AB и CD, величина которых не меняется. В результате движения,  треугольники ABK и CDK станут равносторонними, откуда AC=AK+KC=25+16=41 и ∠ACD=60°. Значит, по т. косинусов AD²=AC²+CD²-2AC·CD·cos∠ACD=41²+16²-2·41·16·(1/2)=1281.
Тогда, по т. синусов R=AD/(2sin∠ACD)=√(1281/3)=√427.
0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос