Вопрос задан 12.03.2019 в 06:28. Предмет Геометрия. Спрашивает Тихомирова Еля.

В конус объемом 36 вписан шар. найдите объем шара если осевое сечение конуса является

равносторонним треугольником.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Данилов Михаил.

Это означает, что радиус шара равен радиусу вписанной в равносторонний треугольник окружности, то есть трети его высоты. r = H/3

при этом радиус основания конуса равен половине стороны R = r*ctg(30) = r*корень(3); Объем конуса равен

Vc = (1/3)*pi*R^2*H = (1/3)*pi*r^3*9 = (9/4)*Vs

Vs = 4*Vc/9 = 16.

0 0
Отвечает Федощенко Ульяна.

Вот решение, такие задачи в основном решаются выражением одного из другого.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос