Вопрос задан 03.03.2019 в 17:10. Предмет Геометрия. Спрашивает Дорофеева Екатерина.

В одном основании прямого кругового цилиндра с высотой 12 и радиусом основания 6 проведена хорда AB

, равная радиусу основания, а в другом его основании проведён диаметр CD , перпендикулярный AB . Построено сечение ABNM , проходящее через прямую AB перпендикулярно прямой CD так, что точка C и центр основания цилиндра, в котором проведён диаметр CD, лежат с одной стороны от сечения. а) Докажите, что диагонали этого сечения равны между собой. б) Найдите объём пирамиды CABNM .
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Каспер Лиля.
О-центр нижнего основания,О1-верхнего
MN ||AB,CD_|_AB⇒CD_|_MN,К-точка пересечения
Основания параллельны,значит АМ и BN перпендикулярны основаниям⇒AMNB-прямоугольник,а диагонали прямоугольника равны.
O1K=MO1*sin60=6*√3/2=3√3⇒высота пирамиды СК=СО1+О1К=6+3√3
V=1/3MN*AM*CK=1/3*6*12*(6+3√3)=24*3(2+√3)=72*(2+√3)
0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос