
В треугольнике ABC BM - медиана и BH - высота. Известно, что АС = 96 и BC = BH. Найдите AH.Напишите
пожалуйста с подробным решением((

Ответы на вопрос

АМ=МС ( т. к ВМ медиана)
угол М = углу М ( ВН высота)
ВС=АВ (условие)
Из этого следует, что они равны.
2) Треугольник АВС равнобедренный так как маленькие треугольники равны и все части у них тоже равны ( углы при основании)
3) А в равнобедренном треугольники медиана является высотой и гипотенузой
Следовательно 96/2=48
Ответ:48



Given Information
We are given that in triangle ABC, BM is the median and BH is the height. It is also known that AC = 96 and BC = BH. We need to find the length of AH.Solution
To find the length of AH, we can use the properties of medians and heights in a triangle.Step 1: Let's start by drawing triangle ABC and labeling the given information.
``` A / \ / \ / \ / \ B---------C ```
We know that AC = 96 and BC = BH. Let's label these lengths on the triangle.
``` A / \ / \ / \ / \ B---------C \ / \ / \ / \ / M ```
Step 2: Since BM is the median, it divides side AC into two equal parts. Let's label the point where BM intersects AC as D.
``` A / \ / \ / \ / \ B---------C \ / \ / \ / \ / M | D ```
Since BM is the median, we have AD = DC.
Step 3: Now, let's consider the right-angled triangle BHD. BH is the height, and we know that BC = BH. This means that triangle BHD is an isosceles right-angled triangle.
``` A / \ / \ / \ / \ B---------C \ / \ / \ / \ / M | D | H ```
In an isosceles right-angled triangle, the length of the hypotenuse is equal to √2 times the length of each leg. Therefore, we can write:
BD = BH = BC
Step 4: Now, let's consider the right-angled triangle AHD. We need to find the length of AH.
``` A / \ / \ / \ / \ B---------C \ / \ / \ / \ / M | D | H | | A ```
In triangle AHD, we have AD = DC and BD = BH. Since BM is the median, it divides AC into two equal parts, so AD = DC = 48.
Using the Pythagorean theorem, we can write:
AH^2 = AD^2 + HD^2
Since AD = DC = 48, we have:
AH^2 = 48^2 + HD^2
Step 5: Now, let's consider triangle BHD again. Using the Pythagorean theorem, we can write:
BD^2 = BH^2 + HD^2
Since BD = BH = BC, we have:
BC^2 = BH^2 + HD^2
But we know that BC = BH, so we can substitute BC with BH:
BH^2 = BH^2 + HD^2
Simplifying, we get:
0 = HD^2
This means that HD = 0.
Step 6: Now, let's go back to the equation we obtained in Step 4:
AH^2 = 48^2 + HD^2
Since HD = 0, we have:
AH^2 = 48^2 + 0
Simplifying, we get:
AH^2 = 2304
Taking the square root of both sides, we find:
AH = √2304
Step 7: Finally, let's calculate the value of AH:
AH = √2304
AH = 48
Answer
Therefore, the length of AH is 48.Please note that this solution assumes that the given information is accurate and that the triangle is a right-angled triangle.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili