Вопрос задан 25.02.2019 в 06:48. Предмет Геометрия. Спрашивает Беккер Каролина.

Площадь ромба равна 216см^2 , а длины его диагоналий относятся как 3:4 . Найдите сторону ромба.

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Гриднева Алиса.
Sромба=(d₁*d₂)/2
d₁:d₂=3:4
пусть х - коэффициент пропорциональности (x>0), тогда d₁=3x, d₂=4x

S=(3x*4x)/2. 
216=6x², x²=36

x=6 дм
d₁=18 дм, d₂=24 дм
прямоугольный треугольник:
катет а=9 дм(d₁ :2=18:2=9дм)
катет b=12 дм (d₂:2=24:1=12 дм)
гипотенуза с (сторона ромба), найти по теореме Пифагора:
c²=9²+12², c=15 дм
 ответ: сторона ромба а=15 дм
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения этой задачи, мы можем использовать формулу для площади ромба и соотношение длин его диагоналей.

Найдем формулу для площади ромба:

Площадь ромба (S) можно вычислить, используя следующую формулу:

S = (d1 * d2) / 2

где d1 и d2 - диагонали ромба.

Задано, что площадь ромба равна 216 см^2:

S = 216 см^2

Известно, что длины диагоналей ромба относятся как 3:4:

d1 : d2 = 3 : 4

Мы можем представить это соотношение как:

d1 = 3x d2 = 4x

где x - общий множитель.

Подставим значения в формулу для площади ромба:

216 = (3x * 4x) / 2

Упростим уравнение:

216 = 12x^2 / 2

216 = 6x^2

Решим уравнение:

6x^2 = 216

Разделим обе части уравнения на 6:

x^2 = 36

Извлечем корень из обеих частей уравнения:

x = ±6

Так как сторона ромба не может быть отрицательной, возьмем положительное значение:

x = 6

Найдем длины диагоналей ромба:

d1 = 3x = 3 * 6 = 18 d2 = 4x = 4 * 6 = 24

Найдем сторону ромба:

Строны ромба можно найти, используя формулу:

a = sqrt((d1^2 + d2^2) / 2)

a = sqrt((18^2 + 24^2) / 2)

a = sqrt((324 + 576) / 2)

a = sqrt(900 / 2)

a = sqrt(450)

a ≈ 21.21

Ответ: Сторона ромба примерно равна 21.21 см.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос