
Стороны параллелограмма равны 20 и 120. Высота, опущенная на первуюсторону, равна 72. Найдите
высоту, опущенную на вторую сторонупараллелограмма.

Ответы на вопрос

S=20*72=1440 ед². С другой стороны,
S=120*x=1440, отсюда х= 12 ед.
Ответ: высота, опущенная на сторону 120, равна 12 ед.



Пусть высота, опущенная на вторую сторону параллелограмма, равна h.
Так как стороны параллелограмма равны 20 и 120, то можно сделать следующие выводы: 1. Диагонали параллелограмма равны между собой и делят его на два равных треугольника. 2. Высота, опущенная на первую сторону, делит треугольник на два прямоугольных треугольника. Поэтому можно применить теорему Пифагора.
Возьмем один из треугольников и обозначим его стороны: a = 20 (катет прямоугольного треугольника) b = 72 (высота, опущенная на первую сторону) c - гипотенуза треугольника
Используя теорему Пифагора, получим: c^2 = a^2 + b^2 c^2 = 20^2 + 72^2 c^2 = 400 + 5184 c^2 = 5584 c ≈ 74.73
Так как диагонали параллелограмма равны между собой, то вторая диагональ также равна 74.73.
Высота, опущенная на вторую сторону, делит треугольник на два прямоугольных треугольника. Поэтому можно


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili