
Вопрос задан 18.02.2019 в 16:34.
Предмет Геометрия.
Спрашивает Фуксина Виктория.
Составить уравнения строн AO и OB правильного треугольника AOB и его высоты AC (рис. 49)



Ответы на вопрос

Отвечает Алиев Анар.
Так как высота - ещё и медиана, а OB = 6, то OC = 3, т. е. x = 3. Отсюда для AC: x - 3 = 0
У правильного треугольника все углы по 60°. Коэффициент перед x равен тангенсу угла O - tg(60°) = √3. Так как прямая проходит через центр, свободный член равен нулю. Отсюда для OA: y = x√3 ⇒ -√3 * x + y = 0
OB лежит на Ox, поэтому для OB: y = 0
У правильного треугольника все углы по 60°. Коэффициент перед x равен тангенсу угла O - tg(60°) = √3. Так как прямая проходит через центр, свободный член равен нулю. Отсюда для OA: y = x√3 ⇒ -√3 * x + y = 0
OB лежит на Ox, поэтому для OB: y = 0


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili