Вопрос задан 13.02.2019 в 18:59. Предмет Геометрия. Спрашивает Добровольский Олег.

Отрезки AB и CD пересекаются в точке M (середина) причём, AM=MB, CM=CD . Докажите, что BC || AD.

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Бактияр Абу.

1)треугольник АМД=тр. СВМ по 1 признаку, т.к. АМ=ВМБ СМ=МД по условию, угол СМВ=уголАМД как вертикальные.

2) Из 1)=> угол А=угол В, т.к. лежат в равных тр-ках УМД и СВМ напротив равных сторон МД и СМ, они накрест леж. при (СВ), (АД) и сек. (АВ) => СВ||АД , что и требовалось доказать

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос