
Вопрос задан 12.02.2019 в 09:24.
Предмет Геометрия.
Спрашивает Волкова Алиса.
Дан равнобедренный треугольник ABC с боковыми сторонами AB=BC. На основании расположены точки D иE
так, что AD=EC, ∡CEB=104°. Определи∡EDB.

Ответы на вопрос

Отвечает Губскова Полина.
АВ = ВС, так как ΔАВС равнобедренный,
AD = CE по условию,
∠ВАС = ∠ВСА как углы при основании равнобедренного треугольника,
значит ΔВАD = ΔВСЕ по двум сторонам и углу между ними.
Следовательно BD = BE, т.е. ΔDBE равнобедренный, тогда
∠EDB = ∠BED как углы при основании равнобедренного треугольника.
∠EDB = 180° - ∠BEC = 180° - 104° = 76°
∠EDB = 76°


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili