
Вопрос задан 28.04.2018 в 02:03.
Предмет Геометрия.
Спрашивает Максютов Степан.
В ромбе ABCD угол A=60 градусов, BH,BF-высоты. Вычислите площадь ромба, если периметр HBF-равен 12
см

Ответы на вопрос

Отвечает Сергеева Карина.
Проведем диагональ ВD.
Треугольник АВD - равнобедренный с углом при А=60°
Отсюда углы при ВD =(180°-60°):2=60°
Треугольник АВD=∆ ВСD- равносторонние.
ВН - высота. ВН=ВF
∆ НВF - равнобедренный.
Угол НВF=60°
Углы при НF= по 60°
∆ НВF - равносторонний
ВН=ВФ= Р∆ ВНF:3=12:3=4 см
Высота равностороннего треугольника равна стороне, умноженной на синус 60°
ВН=АВ*(√3):2 см
АВ=ВН:(√3):2)=8:√3 см
Площадь параллелограмма ( а ромб - параллелограмм) равна произведению его смежных сторон, умноженному на синус угла между ними
Ѕ♢= (8:√3)*(√3):2=4 см²
-------
Сторону ромба можно найти по т.Пифагора:
АВ=√(ВН²+АН²), где АН=АВ:2.
Площадь равна произведению высоты на сторону. -
Проверьте - получите то же значение стороны и площади ромба.



Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili