
Вопрос задан 11.02.2019 в 05:08.
Предмет Геометрия.
Спрашивает Крючков Иван.
Высота и радиус основания цилиндра соответственно равны 9 и 6, концы отрезка АВ длиной (корень из
113) лежат на окружностях верхнего и нижнего оснований. Найдите расстояние от оси цилиндра до отрезка АВ.

Ответы на вопрос

Отвечает Хилязтдинов Фирдус.
Расстояние от оси цилиндра до отрезка АВ - расстояние от центра нижней окружности основания цилиндра до проекции этого отрезка на нижнее основание.
Построим точку В₁ - проекция точки В.
Треугольник АВВ₁ прямоугольный, АВ=√113, ВВ₁=9 (по условию). Тогда АВ₁ по т. Пифагора - √(113-81)=4√2.
АВ₁ - хорда. Расстояние от хорды (х) до центра - перпендикуляр, делящий хорду пополам. Из прямоугольного треугольника с гипотенузой равной радиусу и катетом равным половине хорды находим х:
√(6²-(2√2)²)=√(36-8)=√28=2√7.
Построим точку В₁ - проекция точки В.
Треугольник АВВ₁ прямоугольный, АВ=√113, ВВ₁=9 (по условию). Тогда АВ₁ по т. Пифагора - √(113-81)=4√2.
АВ₁ - хорда. Расстояние от хорды (х) до центра - перпендикуляр, делящий хорду пополам. Из прямоугольного треугольника с гипотенузой равной радиусу и катетом равным половине хорды находим х:
√(6²-(2√2)²)=√(36-8)=√28=2√7.



Отвечает Васин Сашка.
Пусть A∈ (O , R) и B ∈ (O₁ , R) * * * А и В лежат соответственно на окружностях верхнего и нижнего оснований * * *
Через точку B проведем BC || OO₁ ( точка C это проекция точки B на верхнего основания ) . Ясно , что OO₁ | | пл. ACB .
Расстояние от любой точки (например точки O ) прямой OO₁ до
до плоскости ACB будет искомое .
Проведем OM ⊥ AC ⇒ OM ⊥ пл. ACB ; MA=MC =AC/2
AC²= AB² -BC² =(√113)² -9² ) =113 - 81 =32 . * * * AC = √32 = 4√2 * * *
d = OM =√(R² - MA²) =√(R² - (AC/2)²) = √(R² - AC²/4) = √(6² - 32/4) = 2√7 .
Через точку B проведем BC || OO₁ ( точка C это проекция точки B на верхнего основания ) . Ясно , что OO₁ | | пл. ACB .
Расстояние от любой точки (например точки O ) прямой OO₁ до
до плоскости ACB будет искомое .
Проведем OM ⊥ AC ⇒ OM ⊥ пл. ACB ; MA=MC =AC/2
AC²= AB² -BC² =(√113)² -9² ) =113 - 81 =32 . * * * AC = √32 = 4√2 * * *
d = OM =√(R² - MA²) =√(R² - (AC/2)²) = √(R² - AC²/4) = √(6² - 32/4) = 2√7 .


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili