
Вопрос задан 09.02.2019 в 03:37.
Предмет Геометрия.
Спрашивает Даниленко Юля.
Найдите площадь круга, вписанного в ромб с диагоналями равными 16 см и 30 см.


Ответы на вопрос

Отвечает Білак Захар.
Диагонали ромба взаимно перпендикулярны и делятся точкой пересечения пополам.
АО = 15 см, ВО = 8 см.
Из прямоугольного треугольника АОВ по теореме Пифагора:
АВ = √(АО² + ВО²) = √(225 + 64) = √289 = 17 см
Для любого многоугольника, в который можно вписать окружность, справедлива формула:
S = pr, где р - полупериметр.
р = 17 · 4 / 2 = 34 см
Sabcd = АС · BD / 2 = 30 · 16 / 2 = 240 см²
r = S / p = 240/34 = 120/17 см
Sкруга = πr² = 14400π/289 cм²
АО = 15 см, ВО = 8 см.
Из прямоугольного треугольника АОВ по теореме Пифагора:
АВ = √(АО² + ВО²) = √(225 + 64) = √289 = 17 см
Для любого многоугольника, в который можно вписать окружность, справедлива формула:
S = pr, где р - полупериметр.
р = 17 · 4 / 2 = 34 см
Sabcd = АС · BD / 2 = 30 · 16 / 2 = 240 см²
r = S / p = 240/34 = 120/17 см
Sкруга = πr² = 14400π/289 cм²


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili