
Вопрос задан 06.02.2019 в 10:49.
Предмет Геометрия.
Спрашивает Попазов Максим.
К окружности с центром в точке O проведены касательная AB и секущая AO . Найдите радиус окружности,
если AB = 20 , AO = 29

Ответы на вопрос

Отвечает Попов Денис.
Проведем радиус ОВ.
Радиус, проведенный в точку касания, перпендикулярен касательной, значит
∠ОВА = 90°.
Из треугольника ОВА по теореме Пифагора:
ОВ = √(АО² - АВ²) = √(29² - 20²) = √((29 - 20)(29 + 20)) = √(9 · 49) = 3 · 7 = 21
Радиус, проведенный в точку касания, перпендикулярен касательной, значит
∠ОВА = 90°.
Из треугольника ОВА по теореме Пифагора:
ОВ = √(АО² - АВ²) = √(29² - 20²) = √((29 - 20)(29 + 20)) = √(9 · 49) = 3 · 7 = 21


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili