
Вопрос задан 06.02.2019 в 00:09.
Предмет Геометрия.
Спрашивает Туринов Миша.
Теорема Чевы (8 класс) с доказательством


Ответы на вопрос

Отвечает Козак Артур.
Я тут много раз приводил доказательство ПРЯМОЙ теоремы Чевы в обычной геометрической форме. Для разнообразия я сделаю по другому.
слова "площадь треугольника ABC" будут записываться, как Sabc.
Треугольник ABC, прямые AA1 BB1 CC1 пересекаются в одной точке O (точки A1, B1, C1 лежат на сторонах, противоположных одноименным вершинам).
В классической формулировке требуется доказать, что
(AC1*BA1*CB1)/(C1B*A1C*B1A) = 1;
Я обозначу для краткости γ α β ∠
∠AOC1 = ∠COA1 = α;
∠BOC1 = ∠COB1 = β;
∠BOA1 = ∠AOB1 = γ;
Тогда площади 6 треугольников, на которые разрезан ABC этими прямыми, запишутся так (я нарочно перечисляю треугольники не по порядку)
Saoc1 = AO*OC1*sin(α)/2; Scob1 = CO*OCB*sin(β)/2; Sboa1 = BO*OA1*sin(γ)/2;
Scoa1 = CO*OA1*sin(α)/2; Sboc1 = BO*OC1*sin(β)/2; Saob1 = AO*OB1*sin(γ)/2;
Легко видеть, что произведение площадей в первой тройке равно произведению площадей во второй.
Saoc1*Sboa1*Scob1 = Sboc1*Scoa1*Saob1;
Пусть расстояние от точки O до AB равно h1; до BC - h2; до AC - h3;
Если теперь выразить площади через отрезки сторон и эти "высоты" (то есть расстояния от точки O до сторон) то
AC1*h1*BA1*h2*CB1*h3 = C1B*h1*A1C*h2*B1A*h3;
(AC1*BA1*CB1)/(C1B*A1C*B1A) = 1; чтд.
слова "площадь треугольника ABC" будут записываться, как Sabc.
Треугольник ABC, прямые AA1 BB1 CC1 пересекаются в одной точке O (точки A1, B1, C1 лежат на сторонах, противоположных одноименным вершинам).
В классической формулировке требуется доказать, что
(AC1*BA1*CB1)/(C1B*A1C*B1A) = 1;
Я обозначу для краткости γ α β ∠
∠AOC1 = ∠COA1 = α;
∠BOC1 = ∠COB1 = β;
∠BOA1 = ∠AOB1 = γ;
Тогда площади 6 треугольников, на которые разрезан ABC этими прямыми, запишутся так (я нарочно перечисляю треугольники не по порядку)
Saoc1 = AO*OC1*sin(α)/2; Scob1 = CO*OCB*sin(β)/2; Sboa1 = BO*OA1*sin(γ)/2;
Scoa1 = CO*OA1*sin(α)/2; Sboc1 = BO*OC1*sin(β)/2; Saob1 = AO*OB1*sin(γ)/2;
Легко видеть, что произведение площадей в первой тройке равно произведению площадей во второй.
Saoc1*Sboa1*Scob1 = Sboc1*Scoa1*Saob1;
Пусть расстояние от точки O до AB равно h1; до BC - h2; до AC - h3;
Если теперь выразить площади через отрезки сторон и эти "высоты" (то есть расстояния от точки O до сторон) то
AC1*h1*BA1*h2*CB1*h3 = C1B*h1*A1C*h2*B1A*h3;
(AC1*BA1*CB1)/(C1B*A1C*B1A) = 1; чтд.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili