
Вопрос задан 28.01.2019 в 00:50.
Предмет Геометрия.
Спрашивает Штегенов Сырым.
В прямоугольном треугольнике ABC (угол C=90) проведена высота CD так,что длина отрезка BD на 4 см
больше длины отрезка CD, AD=9. Найдите стороны треугольника ABC. В каком отношении CD делит площадь треугольника ABC?

Ответы на вопрос

Отвечает Жернакова Алина.
Пусть CD=x, тогда BD=4+x. По свойству высоты в прямоугольном треугольнике CD²=AD·BD, т.е. x²=9(4+x), откуда x=12 (второй корень отрицателен).
Значит из треугольников CAD и СBD катеты равны √(12²+9²)=15 и √(12²+16²)=20, а гипотенуза 9+16=25.
Отношение площадей треугольников CAD и СBD равно отношению оснований AD/CD=9/16 (у них общая высота CD).
Значит из треугольников CAD и СBD катеты равны √(12²+9²)=15 и √(12²+16²)=20, а гипотенуза 9+16=25.
Отношение площадей треугольников CAD и СBD равно отношению оснований AD/CD=9/16 (у них общая высота CD).



Отвечает Быханов Тима.
Не забудь поблагодарить!!!


Топ вопросов за вчера в категории Геометрия

Геометрия 61

Геометрия 108

Геометрия 17

Геометрия 10

Геометрия 34

Геометрия 75

Геометрия 12

Геометрия 13
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili