
Вопрос задан 24.04.2018 в 23:10.
Предмет Геометрия.
Спрашивает DELETED.
2. Сторона основания правильной треугольной пирамиды равна a см, а угол между боковой гранью и
основанием равен 30. Найдите площадь полной поверхности пирамиды.

Ответы на вопрос

Отвечает Стригалева Ульяна.
Пусть основание - треугольник ABC. Высота основания BE=5 см известна, она - катет в прямоугольном треугольнике BCE (пол-основания), гипотенуза которого BC - сторона основания. Поэтому сторона основания равна
Пирамида ABCD - правильная, поэтому высота пирамиды DM упирается в точку M пересечения медиан (высот) треугольника ABC. Точка пересечения медиан M делит высоту BE в отношении BM/ME=2/1, поэтому ME=BE/3. Высота боковой грани DE - гипотенуза в прямоугольном треугольнике DME, угол E по условию равен 45 градусам, а катет ME равен
Отсюда находим DE:
Теперь находим площадь основания
Площадь боковой грани
Полная площадь поверхности пирамиды равна


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili