
Вопрос задан 24.04.2018 в 05:22.
Предмет Геометрия.
Спрашивает Антипина Мария.
В треугольнике ABC стороны AB и AC равны соответсвенно 7 и 8 ,угол А равен 120 градусов . найдите
расстояние от основания высоты опущенной на сторону AC до середины ВС.

Ответы на вопрос

Отвечает Жаксылык Света.
В этой задаче есть несколько методов решения.
Примем геометрический метод.
Основание высоты из точки В на сторону АС находится за её пределами . Продлим сторону АС до точки Д - основание высоты.
Высота равна 7*cos 30° = 7*√3/2 = 6.0621778.
Искомый отрезок ДЕ - гипотенуза в прямоугольном треугольнике ДЕК.
ДК = (АС+АВ*sin 30) / 2 = (8+7*0.5) / 2 = 11.5 / 2 = 5.75.
EK = BD / 2 = 7*√3/(2*2) = 7*√3/4 = 3.03089. Это следует из того, что проекции точки Е на катеты ВД и ДС делят их пополам.
DE = √(5,75²+ 3.03089²) = √( 33.0625 + 9.1875 42.25 6.5 = √42.25 = 6.5.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili