Вопрос задан 23.01.2019 в 00:54.
Предмет Геометрия.
Спрашивает Дащинская Наталия.
Дан треугольник АВС. Точка М принадлежит АВ, точка К принадлежит ВС. ВМ:МА=3:4. Через МК проходит
плоскость альфа, параллельная АС. Доказать, что ВС:ВК=7:3 и найти длину МК, если АС=14 смОтветы на вопрос
        Отвечает Невоструев Алексей.
                
    Если в одной из пересекающихся плоскостей лежит прямая, параллельная другой плоскости, то она параллельна линии пересечения плоскостей. (свойство)
Плоскость α параллельна АС, следовательно, МК, линия пересечения плоскостей АВС и α, параллельна АС.
В ∆ АВС МК║АС. Поэтому соответственные ∠ВМК и ∠ВАС равны, угол В общий для треугольников АВС и МВК, ⇒ эти треугольники подобны.
Примем коэффициент подобия равным а.
ВК:СК=ВМ:МА=3а:4а, ⇒ВС=ВК+СК=7а.
k=ВС:ВК=7:3 - (доказано).
Отсюда АС:МК=7:3
14:МК=7:3 ⇒ 7МК=42,
МК=6 см
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
	- 
			
Математика
 - 
			
Литература
 - 
			
Алгебра
 - 
			
Русский язык
 - 
			
Геометрия
 - 
			
Английский язык
 - 
			
Химия
 - 
			
Физика
 - 
			
Биология
 - 
			
Другие предметы
 - 
			
История
 - 
			
Обществознание
 - 
			
Окружающий мир
 - 
			
География
 - 
			
Українська мова
 - 
			
Информатика
 - 
			
Українська література
 - 
			
Қазақ тiлi
 - 
			
Экономика
 - 
			
Музыка
 - 
			
Право
 - 
			
Беларуская мова
 - 
			
Французский язык
 - 
			
Немецкий язык
 - 
			
МХК
 - 
			
ОБЖ
 - 
			
Психология
 - 
			
Физкультура и спорт
 - 
			
Астрономия
 - 
			
Кыргыз тили
 - 
			
Оʻzbek tili
 
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			