
Вопрос задан 20.01.2019 в 19:50.
Предмет Геометрия.
Спрашивает Довг Миша.
Найдите квадрат площади равнобедренной трапеции, если его периметр равен 14, а острый угол 60
градусов, а разность оснований равна 4

Ответы на вопрос

Отвечает Богдашин Никита.
АВСД-трапеция ,ВН-высота СЕ-высота ВС=Х, АД=х+4⇒АН=ЕД=2 треугольникАВН, Угол А=60, угол АВН=30, катет лежащий против угла 30 градусов = половине гипотенузы АН=2,АВ=4, СД=4
Р=АВ+СД+ВС+АД, 14=4+4+х+х+4
⇒ 14=12+2х⇒2х=2⇒х=1 ⇒ВС=1 АД=5 найдём ВН²=АВ²-АН²=16-4=12⇒ВН=√12=2√3 S=(DC+AD)/2*h=(1+5)/2*2√3=6√3⇒S²=(6√3)²=36*3=108


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili