Вопрос задан 17.01.2019 в 20:54. Предмет Геометрия. Спрашивает Михайлов Андрей.

В параллелограмме АВСД- биссектриса тупого угла АДС пересекает сторону ВС в точке Е под углом ДЕС

равным 60 градусов и делит стороны на ВЕ=3СМ И СЕ=4СМ,Найти:а)углы параллелограмма б)периметр паралеллограмма в)определить вид четырехугольника АВЕДпомогите пожалуйста срочно((
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Мухина Анна.
Т.к в параллелограме противоп. стороны параллельны, а угол СЕД равен 60 градусов, то угол ЕДА равен тожет60 градусов как внутренние накрест лежащие углы. угол СДЕ равен также 60 град. т.к. ДЕ биссектриса. раз СДЕ и СЕД равны по60 градусов, то треуг. СЕД равносторонний. значит СД равна 4 см. , а раз это параллелограмм то ВА равна также 4ем. СВ равна 4+3=7 и ДА равна тоже 7ми. периметр равен 7+7+4+4=22. разУгол СДА равен 60+60=120, то СВА также 120. значит 360-120*2=120, то ДСВ и ДАБ равны по60 градусов. ДЕВА равно бедренная трапеция трапеция т.к ЕВ параллельна ДА и ДЕ=АВ=4 см.
0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос