Вопрос задан 22.04.2018 в 17:20. Предмет Геометрия. Спрашивает Король Наташа.

Основания трапеция равны 13 и 16.Найдите больший из отрезков,на которые делит среднюю линию этой

трапеции одна из её диагоналей.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Муратбеков Жанадиль.

Рассмотрим треугольник АСЕ. Здесь ОК - средняя линия треугольника, т.к. соединяет середины сторон. Докажем, что это действительно так: 
- СК=ЕК по условию, т.к. МК - средняя линия трапеции;
- СО=АО. Используем теорему Фалеса: если на одной из двух прямых (у нас это прямая СЕ) отложить последовательно несколько равных отрезков (в нашем случае это отрезки СК и ЕК) и через их концы провести параллельные прямые, пересекающие вторую прямую (здесь такими параллельными прямыми являются МК и АЕ, которые пересекают прямую АС), то они отсекут на второй прямой равные между собой отрезки (в нашем случае такими равными отрезками будут являться АО и СО). 
Поскольку ОК - средняя линия треугольника АСЕ, то
OK II AE, OK=1/2AE
OK=1/2*16=8.


2 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос