
Вопрос задан 22.04.2018 в 17:20.
Предмет Геометрия.
Спрашивает Король Наташа.
Основания трапеция равны 13 и 16.Найдите больший из отрезков,на которые делит среднюю линию этой
трапеции одна из её диагоналей.

Ответы на вопрос

Отвечает Муратбеков Жанадиль.
Рассмотрим треугольник АСЕ. Здесь ОК - средняя линия треугольника, т.к. соединяет середины сторон. Докажем, что это действительно так:
- СК=ЕК по условию, т.к. МК - средняя линия трапеции;
- СО=АО. Используем теорему Фалеса: если на одной из двух прямых (у нас это прямая СЕ) отложить последовательно несколько равных отрезков (в нашем случае это отрезки СК и ЕК) и через их концы провести параллельные прямые, пересекающие вторую прямую (здесь такими параллельными прямыми являются МК и АЕ, которые пересекают прямую АС), то они отсекут на второй прямой равные между собой отрезки (в нашем случае такими равными отрезками будут являться АО и СО).
Поскольку ОК - средняя линия треугольника АСЕ, то
OK II AE, OK=1/2AE
OK=1/2*16=8.



Топ вопросов за вчера в категории Геометрия

Геометрия 61

Геометрия 108

Геометрия 17

Геометрия 10

Геометрия 34

Геометрия 75

Геометрия 12

Геометрия 13
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili