Вопрос задан 15.01.2019 в 13:20. Предмет Геометрия. Спрашивает Зайцева Карина.

Отрезок данной длины движется таким образом, что его концы перемещаются по сторонам прямого угла.

Какую линию описывает при этом середина данного отрезка?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Ашмақын Малика.
Поместим начало координат в вершину прямого угла, а оси направим по его сторонам. Пусть конец отрезка, который движется по оси ОХ, имеет координаты (t,0). Тогда, если длина отрезка равна L, то второй конец, который движется по оси ОY, будет иметь координаты (0,\sqrt{L^2-t^2}). Тогда абсцисса середины отрезка x=t/2, а ордината середины y=(\sqrt{L^2-t^2})/2. Отсюда t=2x. Подставляем это в y и получаем, что x и y  связаны соотношением x^2+y^2=(L/2)^2. Т.е. середина отрезка описывает дугу окружности с центром в вершине прямого угла, и радиусом в половину длины отрезка.
0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос