
Вопрос задан 14.01.2019 в 05:42.
Предмет Геометрия.
Спрашивает Вайс Ваня.
На рисунке: угол B=углу C=90°.AO=OD. Докажите,что ∆ABO=∆OCD,и найдите угол A,если угол D=38°


Ответы на вопрос

Отвечает Суховская Лена.
AB║CD как два перпендикуляра к одной прямой (АВ⊥ВС и CD⊥BC), значит
∠ВАО = ∠CDO как накрест лежащие при пересечении параллельных прямых АВ и CD секущей AD.
АО = OD по условию,
∠АОВ = ∠DOC как вертикальные, ⇒
ΔАОВ = ΔDOC по стороне и двум прилежащим к ней углам.
Из равенства треугольников следует, что
∠ВАО = ∠CDO = 38°.
∠ВАО = ∠CDO как накрест лежащие при пересечении параллельных прямых АВ и CD секущей AD.
АО = OD по условию,
∠АОВ = ∠DOC как вертикальные, ⇒
ΔАОВ = ΔDOC по стороне и двум прилежащим к ней углам.
Из равенства треугольников следует, что
∠ВАО = ∠CDO = 38°.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili