Вопрос задан 22.04.2018 в 01:56. Предмет Геометрия. Спрашивает Гаджиев Мухаммедали.

В треугольнике ABC вписана окружность, которая касается сторон AB и BC в точках E и F

соответственно. Касательная MK к этой окружности пересекает стороны AB и BC соответственно в точках M и K. Найдите периметр треугольника BMK, если BE = 6см.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Ессаулов Дима.

Пусть Р - точка касания МК и вписанной в АВС окружности. Тогда МР = МЕ, КР = KF. И ВЕ = BF. Все это - потому что касательные к окружности, проведенные из одной точки, равны. Получаем 2*ВЕ = ВЕ + BF = ВМ + МЕ + BK + KF = ВМ + МP + BK + KP = ВМ + BK + MK = периметр ВМК;

Ответ: периметр ВМК равен 12.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос