Вопрос задан 11.01.2019 в 04:01. Предмет Геометрия. Спрашивает Potapov Fedor.

Точки A, B ,C и D - середины соответственно сторон MN, NK, KP и PM выпуклого четырёхугольника

MNKP.Найдите диагонали четырёхугольника MNKP,если периметр параллелограмма ABCD равен 63 см,а BC в 3 раза меньше CD.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Мудрых Полина.
Рассмотрим параллелограмм ABCD. Пусть ВС будет х, тогда CD будет 3х. Зная периметр параллелограмма, запишем:
2ВС+2CD=P
2*x+2*3x=63
8x=63
x=7.875
BC=7.875 см, CD=3*7.875=23.625 см
Рассмотрим треугольник PKN. Здесь точки С и В соединяют по условию середины сторон треугольника. Значит, ВС - средняя линия PKN. ВС II PN, ВС=1/2PN, отсюда
PN=2*ВС=2*7.875=15,75 см
Рассмотрим треугольник КРМ. Здесь точки С и D - середины сторон по условию. Значит, CD - средняя линия КРМ. CD II KM, CD=1/2KM. Отсюда
КМ=2*CD=2*23.625=47.25 см
0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос